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ABSTRACT 

The high power density of emerging electronic devices is 

driving the transition from remote cooling, which relies on con-

duction and spreading, to embedded cooling, which extracts 

dissipated heat on-site. Two-phase microgap coolers employ the 

forced flow of dielectric fluids undergoing phase change in a 

heated channel within or between devices. Such coolers must 

work reliably in all orientations for a variety of applications (e.g., 

vehicle-based equipment), as well as in microgravity and high-g 

for other applications (e.g., spacecraft and aircraft). The lack of 

acceptable models and correlations for orientation- and gravity-

independent operation has limited the use of two-phase coolers 

in such applications. Previous research has revealed that gravita-

tional acceleration plays a diminishing role in establishing flow 

regimes and transport rates as the channel size shrinks, but there 

is considerable variation among the proposed microscale criteria 

and limited research on two-phase flows in low aspect ratio mi-

crogap channels. Reliable criteria for achieving orientation- and 

gravity-independent flow boiling would enable emerging sys-

tems to exploit this thermal management technique and 

streamline the technology development process.  

As a first step toward understanding the effect of gravity on 

two-phase microgap flow and transport, in the present effort the 

authors have studied the effect of evaporator orientation and 

mass flux on near-saturated flow boiling of HFE7100 in a 1.01 

mm tall by 13.0 mm wide by 12.7 mm long microgap channel. 

Orientation-independence, defined as achieving similar critical 

heat fluxes, heat transfer coefficients, and flow regimes across 

evaporator orientations, was achieved for mass fluxes of 400 

kg/m2-s and greater. The present results are compared to pub-

lished criteria for achieving gravity-independence. 

INTRODUCTION AND MOTIVATION 

Increasing functionality and miniaturization of electronic 

components has exposed the limitations of the existing remote 

cooling paradigm, which relies on conduction and spreading 

across multiple interfaces to dissipate waste heat. The large tem-

perature gradient between the heat source and sink that results 

from remote cooling has resulted in electronic systems that are 

thermally limited [1-4]. Embedded cooling overcomes these lim-

itations by facilitating contact between the heat-generating 

device and coolant flow. Systems designed such that the coolant 

undergoes phase change provide additional benefits, such as 

higher heat transfer coefficients, smaller temperature gradients, 

hot spot mitigation, and lower pumping power.  

Many ground and space systems may benefit from embedded 

cooling, including power electronics, lidar and radar systems, 

power generation systems, and nascent three-dimensional inte-

grated circuits. The NASA Technology Roadmaps [5] list needs 

for removal of heat fluxes greater than 1 MW/m2 over small ar-

eas with tight temperature control; surfaces with micro- and 

nano-scale features to enhance two-phase heat transfer; and 

high-capacity, two-phase heat transport systems. A key benefit 

of embedded two-phase coolers for space missions is the ability 

to deliver waste heat from the heat source to the radiator with 

little temperature drop, which enables the radiator to operate at 

higher temperatures, thereby reducing its size and mass. Other 

benefits of pumped fluid loops include longer transport distances 

with potential use of multiple evaporators and condensers and 

precise flow rate control, which increases heat flux limits and 

enables on-demand shutdown of the cooling system [6].  

One of the significant barriers to the use of two-phase coolers 

is the complex nature of convective boiling, particularly for mi-

crogravity and high-g applications for which only limited 

experimental data are available. The complexity can be reduced 

through the use of a single, low aspect ratio channel (i.e., a mi-

crogap) rather than an array of parallel microchannels. This 

configuration mitigates flow instabilities and reversals as gener-

ated vapor can expand both spanwise and downstream [7]. 

However, two-phase microgap coolers are not employed for 
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spacecraft thermal management due to the lack of data for mi-

crogravity and high-g environments and absence of acceptable 

models that would enable extrapolation of heat transfer and flow 

behavior from available terrestrial data.   

Physics-based flow regime maps reveal that gravitational ac-

celeration plays a diminishing role in establishing flow regimes 

and transport rates as the channel size shrinks, thus facilitating 

more reliable extrapolation from existing databases. The goal of 

the present effort is to characterize the fluid physics governing 

two-phase flows in heated microgaps, with emphasis on methods 

for minimizing the effect of gravity in such flows. Experimental 

validation of orientation- and gravity-independent behavior 

would enable emerging systems to exploit this powerful thermal 

management technique and reduce development time and costs 

through reliance on ground-based testing. 

PREVIOUS RESEARCH 

Microscale Definitions 

Microscale in the two-phase flow sense refers to flows for 

which the controlling mechanisms differ from those at the mac-

roscale, with the influence of surface tension and shear forces 

increasing and that of gravity diminishing [8]. Many criteria that 

quantify the macroscale-to-microscale transition relate to the ra-

tio between gravitational and surface tension forces. These 

criteria are often provided as threshold Bond numbers—or can 

be re-arranged to provide equivalent Bond numbers—below 

which the effect of gravity is expected to be small. The Bond 

number is commonly defined as 

 

𝐵𝑜𝐷ℎ
=

(𝜌𝑙 − 𝜌𝑣) ∙ 𝑔 ∙ 𝐷ℎ
2

𝜎
 (1) 

where 𝐵𝑜𝐷ℎ
 is the Bond number based on the hydraulic diame-

ter,  𝜌𝑙  is the liquid density, 𝜌𝑣 is the vapor density, 𝑔 is the 

acceleration due to gravity, 𝐷ℎ  is the hydraulic diameter, and 𝜎 is 

the surface tension. Ullman and Brauner [9] and Baldassari and 

Marengo [10] noted that this formulation of the Bond number 

might not represent correctly the relative significance of the 

gravitational and surface tension forces. For rectangular ducts 

configured with their width and length normal to the gravity vec-

tor, the Bond number becomes 

 

𝐵𝑜𝐻𝑊 =
(𝜌𝑙 − 𝜌𝑣) ∙ 𝑔 ∙ 𝐻 ∙ 𝑊

𝜎
 (2) 

where 𝐵𝑜𝐻𝑊  is the Bond number based on the channel height 

and width, 𝐻 is the channel height, and 𝑊 is the channel width. 

This variation of the Bond number accounts for the gravity term 

scaling with channel height (∆𝜌 ∙ 𝑔 ∙ 𝐻) and the surface tension 

term scaling with channel width (𝜎/𝑊). This formulation sug-

gests that channels with low aspect ratios are more gravity 

dominated than implied by their hydraulic diameter [9]. This ob-

servation deserves additional attention, particularly considering 

that the liquid-vapor interface rarely spans the channel width in 

low aspect ratio channels at practical flow rates for cooling ap-

plications. A more appropriate formulation of the surface tension 

term in the Bond number may consider the widest liquid-vapor 

interface rather than the channel width. Another consideration 

related to the Bond number is the selection of the length scale for 

the gravity term. For a rectangular channel, the gravity vector 

can be parallel to the channel height, width, or length, depending 

on the channel orientation, resulting in a wide range of Bond 

numbers for the same channel operated in different orientations. 

In addition to the Bond number, the Weber and Froude num-

bers are often used to characterize two-phase flows, with the 

Weber number scaling inertia and surface tension forces and the 

Froude number scaling inertia and gravity forces. The Weber 

number is defined as 

 

𝑊𝑒 =
𝜌𝑚 ∙ 𝑈𝑚

2 ∙ 𝐿

𝜎
=

𝐺2 ∙ 𝐿

𝜌𝑚 ∙ 𝜎
 (3) 

where  𝜌𝑚 is the mixture density,  𝑈𝑚  is the mixture velocity, 𝐿 

is the characteristic length, and 𝐺 is the mass flux. The charac-

teristic length is the channel diameter for circular ducts and the 

larger of the channel width and channel height for rectangular 

ducts. The Froude number is defined below. 

  

𝐹𝑟 = √
𝑊𝑒

𝐵𝑜
=

𝐺

√𝜌𝑚 ∙ (𝜌𝑙 − 𝜌𝑣) ∙ 𝑔 ∙ 𝐿
 (4) 

The characteristic length for the Froude number should be the 

channel dimension parallel to the gravity vector, although the 

hydraulic diameter is sometimes used. 

Orientation Effects in Flow Boiling  

Many experiments have been performed to assess the effect 

of evaporator orientation on flow boiling performance, with 

some experiments also being performed in reduced gravity. In 

the results presented below, the Bond number is calculated using 

the hydraulic diameter and, for rectangular ducts, the channel 

height and width in the horizontal, upward facing heater orienta-

tion (subsequently referred to as the HU orientation). The 

previous efforts are sorted loosely in order of decreasing Bond 

number. For simplicity, the Weber and Froude numbers are cal-

culated using only the hydraulic diameter and saturated liquid 

properties (i.e., the effect of vapor quality is not included). 

Zhang, Mudawar, and Hasan [11] studied near-saturated 

flow boiling (∆𝑇𝑠𝑢𝑏 = 3 − 4 𝐾) of FC72 in a 5.0 mm tall by 2.5 

mm wide by 101.6 mm long channel (𝐷ℎ = 3.33 𝑚𝑚;  𝐵𝑜𝐷ℎ
 ≅

17.8; 𝐵𝑜𝐻𝑊 ≅ 20.0). At 0.1 m/s (𝑊𝑒 ≅ 5.5; 𝐹𝑟 ≅ 0.6), critical heat 

flux (CHF) and flow regimes varied considerably with orienta-

tion (range of 36 to 276 kW/m2), but at 1.5 m/s (𝑊𝑒 ≅ 1238; 𝐹𝑟 ≅

8.1) large drag forces reduced orientation effects (range of 225 

to 310 kW/m2). In microgravity, unlike in terrestrial gravity, 

CHF followed the same mechanism at low and high velocities; 

at 0.25 and 1.4 m/s, bubbles coalesced along the heated wall into 
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large vapor patches. However, this behavior did not translate to 

similar CHF, which doubled from 140 to 280 kW/m2 as the ve-

locity increased. Little variation in CHF was found across the 

same velocity range for the HU orientation in terrestrial gravity. 

Konishi, Mudawar, and Hasan [12] studied flow boiling of 

FC72 in a 5.0 mm tall by 2.5 mm wide by 101.6 mm long channel 

with two-phase inlet (𝐷ℎ = 3.33 𝑚𝑚;  𝐵𝑜𝐷ℎ
 ≅ 18.2; 𝐵𝑜𝐻𝑊 ≅

20.5). They performed studies at eight evaporator orientations 

with liquid inlet velocities from 0.126 to 1.130 m/s (𝑊𝑒 ≅ 8.9 −

718; 𝐹𝑟 ≅ 0.7 − 6.3) and inlet vapor qualities of 0.01 to 0.19. 

CHF varied significantly with orientation and velocity, with the 

highest values achieved when 𝜃 = 0° or 45° and the lowest values 

achieved when 𝜃 = 180° or 225°. Variation in CHF with respect 

to orientation diminished as the inlet velocity and quality in-

creased. 

Kharangate, Konishi, and Mudawar [13] studied near satu-

rated (∆𝑇𝑠𝑢𝑏 = 2 − 8 𝐾) flow boiling of FC72 in a 5.0 mm tall by 

2.5 mm wide by 114.6 mm long channel (𝐷ℎ = 3.33 𝑚𝑚;  𝐵𝑜𝐷ℎ
 ≅

18.1; 𝐵𝑜𝐻𝑊 ≅ 20.3). They performed studies at different evapo-

rator orientations and in reduced gravity during parabolic flights 

over a range of flow rates (𝑊𝑒 ≅ 6.8 − 2277; 𝐹𝑟 ≅ 0.6 − 11.2). 

The authors found that the horizontal heater up and vertical up-

flow orientations provided the upper CHF bound, the horizontal 

heater down and vertical downflow orientations provided the 

lower CHF bound, and that the difference in CHF among the ori-

entations was less pronounced as the liquid inlet velocity 

increased (especially above 1.5 m/s). 

Wang et al. [14] studied the effect of inclination on flow boil-

ing of HFE7100 in a copper heat sink with seven channels, each 

0.520 mm tall by 2.005 mm wide by 25.4 mm long 

(𝐷ℎ = 0.826 𝑚𝑚; 𝐵𝑜𝐷ℎ
= 1.06;  𝐵𝑜𝐻𝑊 = 1.63). The evaporator 

was configured with angles (𝜃) of -90° (vertical down-

flow), -45°, 0° (horizontal), 45°, and 90° (vertical upflow). 

Vertical downflow provided the lowest heat transfer coefficient 

(HTC) at each of the mass and heat fluxes studied (100, 200, and 

300 kg/m2-s; 25 and 37.5 kW/m2). The 45° inclined orientation 

provided the best heat transfer at mass fluxes of 100 and 200 

kg/m2-s (𝑊𝑒 ≅ 0.5 − 2.1; 𝐹𝑟 ≅ 0.7 − 1.4), which the authors at-

tributed to the combined effect of buoyancy and asymmetry of 

the elongated bubbles. At 300 kg/m2-s (𝑊𝑒 ≅ 4.8; 𝐹𝑟 ≅ 2.1), the 

heat transfer performance was less dependent on orientation, 

which the authors attributed to the higher Froude number. Higher 

Froude numbers also resulted in bubbles that were more sym-

metric, even for inclined orientations.  

Lee et al. [15] studied orientation effects on subcooled flow 

boiling (∆𝑇𝑠𝑢𝑏 = 10 − 16 𝐾) of FC72 in an array of four parallel 

sets of 20 channels, each 1.0 mm deep by 0.231 mm wide by 

152.4 mm long (𝐷ℎ = 0.375 𝑚𝑚;  𝐵𝑜𝐷ℎ
 ≅ 0.34;  𝐵𝑜𝐻𝑊 ≅ 0.55). 

Two-phase HTCs varied significantly with orientation at mass 

fluxes of 180 to 302 kg/m2-s (𝑊𝑒 ≅ 1.3 − 3.6; 𝐹𝑟 ≅ 2.0 − 7.0), but 

good agreement was observed across orientations for mass 

fluxes of 358 to 645 kg/m2-s (𝑊𝑒 ≅ 5.0 − 16.4; 𝐹𝑟 ≅ 3.9 − 7.0). 

Zhang, Pinjala, and Wong [16] studied the effect of evapora-

tor orientation on subcooled (∆𝑇𝑠𝑢𝑏 = 31 𝐾) flow boiling of FC72 

in an array of twenty-one 2.0 mm tall by 0.2 mm wide by 15 mm 

long channels (𝐷ℎ = 0.364 𝑚𝑚; 𝐵𝑜𝐷ℎ
≅ 0.22; 𝐵𝑜𝐻𝑊 ≅ 0.66) at 

mass fluxes of 130, 228, and 314 kg/m2-s (𝑊𝑒 ≅ 0.4 − 2.4; 𝐹𝑟 ≅

1.4 − 3.3). In the vertical downflow orientation at the lowest 

mass flux, bubbles moved at a much lower velocity (3-18 mm/s) 

than the bulk liquid (75 mm/s), but the average thermal re-

sistance of the heat sink was only 4 % higher than that achieved 

in the vertical upflow orientation. At higher mass fluxes, the var-

iation across orientations was negligible. 

Leão et al. [17] studied slightly subcooled (∆𝑇𝑠𝑢𝑏 = 5 − 10 𝐾) 

flow boiling of R245fa in a copper heat sink with 50 parallel 

channels, each 0.494 mm tall by 0.123 mm wide by 15 mm long 

(𝐷ℎ = 0.197 𝑚𝑚; 𝐵𝑜𝐷ℎ
= 0.039;  𝐵𝑜𝐻𝑊 = 0.060). They covered 

mass fluxes of 300 to 900 kg/m2-s (𝑊𝑒 ≅ 1.0 − 9.3; 𝐹𝑟 ≅ 5.2 −

15.5) and heat fluxes up to 300 kW/m2. They found that the hor-

izontal position provided the highest average HTC. The flow 

distribution was uniform in the vertical upflow orientation, with 

only rare instances of reverse flow. The non-uniformity of the 

two-phase flow distribution among the channels was worst with 

the heat sink vertically positioned with microchannels horizon-

tally aligned; the maldistribution was less severe with higher 

mass fluxes, more subcooling, and lower heat fluxes. 

Kandlikar and Balasubramanian [18] studied flow boiling of 

water in an array of six parallel channels; each channel was 0.197 

mm deep by 1.054 mm wide by 63.5 mm long (𝐷ℎ =

0.332 𝑚𝑚; 𝐵𝑜𝐷ℎ
≅ 0.018; 𝐵𝑜𝐻𝑊 ≅ 0.033). They collected data at a 

single mass flux of 120 kg/m2-s (𝑊𝑒 ≅ 4.1; 𝐹𝑟 ≅ 15.3) and a sin-

gle heat flux of 317 kW/m2 in three orientations (horizontal, 

vertical upflow, and vertical downflow). The horizontal and ver-

tical upflow orientations provided similar HTCs, but the HTC in 

the vertical downflow orientation was 26 % less, which the au-

thors attributed to severe backflow and corresponding flow 

maldistribution in the vertical downflow orientation. The authors 

speculated that the absence of gravity would yield results similar 

to those of the horizontal orientation since the absence of gravity 

would not cause any changes in the forces along the flow direc-

tion relative to this orientation. 

In a study of the dynamic motion of liquid-vapor systems in 

low gravity, Reynolds, Saad, and Satterlee [19] categorized two-

phase systems into regimes based on the dominance of surface 

tension, inertia, and gravity based on values of the Bond, Weber, 

and Froude numbers. They proposed that the boundaries among 

the regimes occurred when the non-dimensional parameters 

were near unity, with surface tension dominating when 𝐵𝑜 ≪ 1 

and 𝑊𝑒 ≪ 1, gravity dominating when 𝐵𝑜 ≫ 1 and 𝐹𝑟 ≪ 1, 

and inertia dominating when 𝐵𝑜 ≫ 1 and 𝐹𝑟 ≫ 1. 

Baba et al. [20] studied subcooled (∆𝑇𝑠𝑢𝑏 = 32 − 33 𝐾) flow 

boiling of FC72 in circular tubes with inner diameters of 0.13 

mm (𝐵𝑜 = 0.033) and 0.51 mm (𝐵𝑜 = 0.51). The 0.13 mm diam-

eter tube was 100 mm long and the 0.51 mm diameter tube was 

200 mm long. Experiments were performed in horizontal, verti-

cal upflow, and vertical downflow orientations covering mass 

fluxes of 50 to 200 kg/m2-s and heat fluxes of 2.6 to 16.4 kW/m2. 

They observed that HTCs were influenced by tube orientation 

when 𝐹𝑟 < 4 in the 0.51 mm diameter tube. They also found that 

there was no effect of tube orientation for the 0.13 mm diameter 
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tube for all mass and heat fluxes studied, and HTCs were inde-

pendent of vapor quality when 𝑊𝑒 < 5, which they interpreted 

as being the transition between surface tension and inertia dom-

inated regimes. 

Due to length constraints, additional studies are not covered 

here, but are covered in several review papers [10, 21-23].  

Collectively, the results presented cover orientation effects in 

two-phase flows for rectangular channels with hydraulic diame-

ters of 0.197 to 3.333 mm and Bond numbers based on the 

hydraulic diameter of 0.018 to 18.2. In such channels, orientation 

effects are reduced or eliminated as the channel size decreases 

and as the velocity, subcooling, and vapor quality increase. De-

spite considerable research in this area, the channels in previous 

studies have been limited to aspect ratios (𝐻/𝑊) in the range of 

0.1 to 3.9 (microgaps tend to have aspect ratios < 0.1) and dom-

inant force maps have been developed exclusively based on 

results for circular ducts.  

OBJECTIVES 

The literature review revealed an absence of criteria for pre-

dicting the transition to orientation- and gravity-independent 

two-phase flow in microgap channels. The appropriate length 

scales used to calculate the relevant non-dimensional numbers 

for the microscale criteria also remain uncertain. These issues 

prevent the reliable use of existing criteria without further vali-

dation. Accordingly, a research effort was initiated to: 

1. Explore orientation effects on flow boiling CHF, HTCs, 

and flow regimes in microgap channels; 

2. Study the efficacy of using the Bond, Weber, and Froude 

numbers for establishing orientation- and gravity-inde-

pendent behavior in microgap channels; and 

3. Establish the magnitude of appropriate non-dimensional 

numbers for orientation-independent behavior. 

As a first step in meeting these objectives, a test facility has 

been developed and preliminary experiments on the flow boiling 

performance of HFE7100 in a 1.01 mm tall by 13.0 mm wide 

microgap have been performed. 

EXPERIMENTAL METHODS 

Flow Loop 

An experimental facility was assembled to provide two-

phase test data with the evaporator in various orientations with 

respect to the gravity vector. The flow loop, a schematic of which 

is shown in Figure 1, supplies degassed fluid to the evaporator at 

the prescribed flow rate, temperature, and pressure. A gear pump 

with an electromagnetic drive (Micropump Series GA) circulates 

the working fluid. A temperature-controlled in-line heater (Wat-

low Fluent FLC-16) provides the desired liquid subcooling at the 

evaporator inlet. Fluid leaving the evaporator is condensed and 

subcooled via a plate heat exchanger (Lytron LL520G14) con-

nected to a refrigerated/heating circulator (Julabo FP50). The 

circulator working fluid is distilled water. A 7 µm sintered metal 

filter collects particulate contamination within the flow loop. A 

temperature-controlled, two-phase reservoir regulates the low-

side pressure for the loop and compensates for the expansion and 

contraction of the working fluid. 

 
Figure 1: Flow loop schematic 

The liquid flow rate is measured by a microturbine flow sen-

sor with a range of 50 to 500 ml/min and accuracy of ± 0.5 % of 

the full-scale range (McMillan Flow Products Model 104). The 

fluid temperature is measured via type-T thermocouple probes at 

the flow meter, preheater inlet and outlet, evaporator inlet and 

outlet, condenser inlet and outlet, and reservoir vapor space. The 

absolute pressure is measured in the reservoir vapor space and 

evaporator inlet by silicon, strain gauge type transducers with 

ranges of 0 to 300 kPa and accuracies of ± 0.1 % of the full scale 

range (Honeywell FP2000). A variable reluctance pressure sen-

sor measures the differential pressure between the evaporator 

inlet and outlet manifolds with replaceable diaphragms, each 

with an accuracy of ± 0.25 % of the full-scale range (Validyne 

Engineering DP15). For the present study, the differential pres-

sure transducer was calibrated with a range of 0 to 1.5 kPa. 

The working fluid is HFE7100, due to its saturation proper-

ties (boiling point of 59.8 °C at 101.3 kPa), low freezing point 

(-135 °C), low electrical conductivity, non-toxicity, and non-

flammability. The flow loop was designed to minimize the sys-

tem leak rate due to concerns of air infiltrating the system, which 

would affect the thermodynamic properties and boiling perfor-

mance of the fluid [24-26]. Prior to charging the loop, the 

working fluid was subjected to multiple freeze-pump-thaw cy-

cles to remove non-condensable gases. The saturation pressure 

and temperature of the degassed fluid were measured and com-

pared against reference data [27] to verify that the non-

condensable gases had been removed. 

Evaporator Module 

The evaporator heat source is a 12.7 mm by 12.7 mm by 0.6 

mm silicon thermal test chip (TTC) mounted to a printed circuit 

board (Thermal Engineering Associates TTV-4102). The TTC 
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provides uniform heating with a four-wire heater circuit design 

to eliminate parasitic heat losses in the supply wiring. Ten diodes 

provide temperature measurements of the frontside of the TTC. 

The diodes were calibrated using a constant temperature air oven 

and four-wire, class 1/10 DIN, 100 Ω resistance temperature de-

tector probes. The temperature of the oven was held constant 

until consecutive readings of the values of each temperature and 

resistance measurement, averaged at 1 Hz over 5 minutes, varied 

by less than 0.01 °C/min and 0.1 Ω/min, respectively. For flow 

loop operations, power to the TTC was supplied by a Keithley 

2280S-60-3 programmable DC power supply. 

The evaporator assembly, shown in Figure 2, is composed of 

a thermal isolator base, fluid enclosure base, thermal test vehicle, 

fluid enclosure, polycarbonate insert, fluid enclosure cap, and 

thermal isolator cap. The fluid enclosure includes the fluid inlet 

and outlet taps and manifolds, pressure taps for absolute and dif-

ferential pressure measurements, and evaporator inlet and outlet 

fluid temperature probes. Replaceable, transparent polycar-

bonate inserts are inset to the fluid enclosure. The microgap 

channel is located between the exposed face of the TTC and the 

interior face of the polycarbonate cover. Measurements of the 

surfaces via confocal microscopy revealed an average roughness 

of 0.035 μm ± 0.018 μm for the silicon TTC and 0.348 μm ± 

0.018 μm for the polycarbonate surface of the microgap. The 

process for characterizing the thermal losses of the evaporator 

assembly to ambient are detailed in [28]. 

 
Figure 2: Evaporator assembly axial cross section 

(to scale; for reference, thermal test chip is 12.7 mm wide) 

A Keyence VHX-5000 digital microscope with a precision 

stage was used to measure the gap height after the evaporator 

assembly was completed. The height of the stage was adjusted 

in 10 μm increments until the top of the silicon TTC was in focus. 

Using this height as the zero reference, the height of the stage 

was then adjusted until the bottom of the polycarbonate cover 

was in focus to determine the microgap height. For the present 

assembly, seven measurements were taken, which produced an 

average gap height of 1.02 mm, range of 0.99 to 1.04 mm, and 

uncertainty of ± 0.019 mm. The optical measurement technique 

was validated in an earlier effort [28] and the present measure-

ments agree with the expected channel height based on 

individual component measurements, which produced an ex-

pected gap height of 1.03 mm. 

Optical measurements of the gap height were performed at 

22 °C with the interior cavity of the flow enclosure open to at-

mospheric pressure. During two-phase testing, the flow 

enclosure and polycarbonate temperature was 55 to 60 °C based 

on a nominal inlet saturation temperature of 62 °C, inlet subcool-

ing of 1 to 5 °C, and convective losses to the ambient. The 

pressure effect on the microgap height was neglected, as the sat-

uration pressure of HFE7100 at 62 °C is close to atmospheric 

pressure. Accounting for thermal expansion of the polycarbonate 

cover island and stainless steel enclosure up to the ledge on 

which the polycarbonate cover rests and assuming a temperature 

rise of 35 °C results in an estimated reduction in the microgap 

height of 0.01 mm. Thus, the in-situ gap height was 1.01 mm. 

Uncertainty 

Voltage and current measurements for the TTC were read di-

rectly from power supply and recorded by the data acquisition 

program. All other signals were read by a National Instruments 

data acquisition chassis with modules for thermocouples, volt-

ages, and resistances. The data acquisition rate was 25 Hz. The 

uncertainties are listed in Table 1. 

Table 1: Measurement and derived value uncertainties 

Measurement or  

Derived Value 
Absolute Uncertainty 

Normalized 

Uncertainty 

Heat flux 0.04 – 1.2 kW/m2 0.4 – 0.6 % 

Surface temperature 0.33 – 0.37 °C 0.3 – 0.6 % 

Evaporator inlet liquid 

temperature 
0.60 °C 1.1 % 

Evaporator inlet  

saturation temperature 
0.08 °C 0.1 % 

Single-phase heat 

transfer coefficient 
0.03 – 0.13 W/m2-K 1.6 – 16.3 % 

Two-phase heat  

transfer coefficient 
0.05 – 0.13 W/m2-K 1.4 – 2.2 % 

Flow rate 6.15E-5 kg/s 0.7 – 4.7 % 

Mass flux 5.0 – 14.0 kg/m2-s 2.0 – 5.0 % 

  

Orientations and Bond Numbers 

In order to produce a range of gravity effects, the evaporator 

was configured in five orientations: horizontal heater up (HU), 

vertical upflow (VU), horizontal heater down (HD), vertical 

downflow (VD), and sideways (SW), as shown in Figure 3. 

The appropriate length scales used in the calculation of the 

Bond number remain a subject of debate, as discussed in the 

“Microscale Definitions” section. Table 2 lists the Bond number 

for each orientation using two formulations: 

1. Conventional definition of the hydraulic diameter, squared; 

2. Channel width, 𝑊, for the surface tension term and length 

in the direction of the gravity vector (i.e., 𝐻 for the HU and 
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HD orientations, 𝐿 for the VU and VD orientations, and 𝑊 

for the SW orientation) for the gravity term. 

 
Figure 3: Evaporator orientations 

 

Table 2: Bond number variation as a function of formulation and 

orientation for a fixed geometry 

Orientation Bond Number 

HU 

∆𝜌 ∙ 𝑔 ∙ 𝐷ℎ
2

𝜎
= 4.9 

∆𝜌 ∙ 𝑔 ∙ 𝐻 ∙ 𝑊

𝜎
= 18.4 

HD 

VU ∆𝜌 ∙ 𝑔 ∙ 𝐿 ∙ 𝑊

𝜎
= 231 

VD 

SW 
∆𝜌 ∙ 𝑔 ∙ 𝑊 ∙ 𝑊

𝜎
= 237 

 

Operating Sequence 

Conditioning the flow loop for data collection began with en-

abling the reservoir heater and allowing its temperature and 

pressure to stabilize. After that, the refrigerated/heating circula-

tor was powered on, followed by powering on the flow loop 

pump and preheater. The pump control voltage, preheater power, 

and reservoir set point were adjusted to achieve the desired evap-

orator inlet conditions. Once stable, data was recorded for 60 

seconds. Then, 10 kW/m2 was applied to the TTC. Once stable, 

data was again recorded for 60 seconds. This process was con-

tinued until the onset of boiling, after which the pump control 

voltage, preheater power, and reservoir set point were adjusted 

to maintain the desired evaporator inlet conditions after each in-

crease in the heat flux. Photos were captured at each heat flux 

after the onset of boiling. The heat flux was increased in incre-

ments of 10 to 20 kW/m2, with data recorded for 60 seconds at 

each heat flux, until the user-specified temperature limit of 120 

°C was violated. 

RESULTS AND ANALYSIS 

Single- and two-phase data were collected for five orienta-

tions at nominal mass fluxes of 100, 200, 300, 400, 600, and 700 

kg/m2-s. The inlet saturation temperature was held constant at 

62 °C. The inlet subcooling was kept as low as possible without 

introducing vapor into the evaporator inlet manifold. At the low-

est mass flux of 100 kg/m2-s, the inlet subcooling averaged 

3.7 °C and at the highest mass flux of 700 kg/m2-s, the inlet sub-

cooling averaged 1.3 °C. At 100 kg/m2-s, the minimum inlet 

quality was -0.063 and the maximum outlet quality was 0.088; 

at 700 kg/m2-s, the same range was -0.020 to 0.026. 

Critical Heat Flux 

Figure 4 shows the flow boiling CHF as a function of mass 

flux and evaporator orientation. At 100 kg/m2-s, the orientation 

with the lowest CHF, vertical downflow, suffered from a 53 % 

deterioration in CHF relative to the orientation with the highest 

CHF, vertical upflow. The variation in CHF between the best and 

worst orientations decreased considerably as the mass flux in-

creased to 200 kg/m2-s (18 %), 300 kg/m2-s (10 %), 400 kg/m2-

s (5 %), 600 kg/m2-s (7 %), and 700 kg/m2-s (7 %), which can 

be attributed to the more dominant role of inertia as the mass flux 

increases. Nonetheless, even at mass fluxes of 400 kg/m2-s and 

greater, the variation in CHF across orientations exceeded the 

experimental uncertainty (0.4 %), indicating that a small gravity 

effect persisted. From 300 to 700 kg/m2-s, CHF increases nearly 

linearly with mass flux, which is characteristic of nucleate boil-

ing. Nucleate boiling is expected due to the very short channel 

length (𝐿/𝐷ℎ = 6.8) and low outlet qualities. 

 
Figure 4: Flow boiling CHF as a function of mass flux and evapo-

rator orientation 
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Heat Transfer Coefficients and Flow Regimes 

Figure 5 shows the average single- and two-phase HTCs as a 

function of heat flux, evaporator orientation, and mass flux. For 

all test cases, the HTCs are initially for single-phase liquid; the 

single-phase HTCs show excellent agreement across orienta-

tions, as expected. A jump in the HTC is observed at the onset 

of nucleate boiling (ONB). The largest increases in HTC were 

observed for cases in which vapor covered all or most of the TTC 

at ONB (e.g., HD and SW at 400 kg/m2-s); in other instances, 

vapor partially covered the TTC until the heat flux was increased 

further, resulting in a gradual increase in the average HTC (e.g., 

HU and VU at 400 kg/m2-s). The lack of clear trends in the heat 

flux at ONB suggests that orientation does not play a dominant 

role in this regard.  

In general, after ONB, the HTCs increase with increasing 

heat flux, as expected during nucleate boiling. As CHF is ap-

proached, the HTCs plateau or drop, and further increases in the 

heat flux result in an overtemperature event and power is re-

moved from the TTC. The two-phase HTCs were compared 

across orientations by dividing the minimum HTC by the maxi-

mum HTC at each nominal heat flux common to all orientations. 

Only data for which all orientations showed two-phase flow were 

considered and non-linear data near CHF were excluded. The av-

erage variation in two-phase HTC between the best and worst 

orientations decreased considerably as the mass flux increased 

from 100 kg/m2-s (34 %) to 200 kg/m2-s (15 %), 300 kg/m2-s 

(13 %), 400 kg/m2-s (11 %), 600 kg/m2-s (4 %), and 700 kg/m2-s 

(8 %). Within each mass flux, the variation decreased as the heat 

flux increased. For example, at 300 kg/m2-s, the variation across 

orientations at 74 kW/m2 was 17 %, but the variation at 152 

kW/m2 was only 11 %; at 400 kg/m2-s, the variation across ori-

entations at the same heat fluxes decreased from 15 % to 8 %. 

The variation of the HTC with heat flux is less pronounced at 

mass fluxes of 600 and 700 kg/m2-s. 

At the lowest mass flux of 100 kg/m2-s, the HTCs in the VD 

orientation are much lower than those in the other orientations. 

In this orientation and mass flux, the centerline of the channel is 

largely devoid of liquid and most of the two-phase flow occurs 

near the channel sides, as shown in Figure 6. The SW orientation 

provided low HTCs at low heat fluxes; the images show strong 

gravity effects in this orientation, with a large vapor patch cov-

ering the top of the channel and growing toward the channel 

outlet. The vapor slugs in the vertical upflow orientation are 

smallest, which can be attributed to gravity accelerating their exit 

from the channel, which enhances heat transfer and delays CHF. 

As the mass flux was increased to 200 and then 300 kg/m2-s, 

better agreement is observed among the five orientations, but 

some variations in the HTCs persist. For example, at 300 kg/m2-

s the VU orientation provides markedly better HTCs at heat 

fluxes exceeding 150 kW/m2. Despite some variation in the 

HTCs, the flow regimes are more consistent across orientations 

in this range of mass and heat fluxes, as shown in Figure 7. 

Strong gravity effects on the two-phase flow behavior, which 

were particularly noticeable in the VD and SW orientations at 

lower heat and mass fluxes, are largely eliminated. 

At and above 400 kg/m2-s, the HTCs at each heat flux gener-

ally agree well across orientations, though the variation still 

exceeds the experimental uncertainty, indicating a subtle gravity 

effect. After ONB, the HTCs generally exhibit excellent linear-

ity. The HTCs also show consistent behavior as CHF is 

approached and the HTCs plateau or decrease slightly. Although 

not shown here due to length constraints, images of the two-

phase flows also showed consistent patterns across orientation at 

mass fluxes of 600 kg/m2-s and greater. 

Dominant Force Regime Maps 

Collectively, the CHF, HTC, and flow regime results suggest 

that the effect of gravity is small for mass fluxes of 400 kg/m2-s 

and higher for near-saturated flow boiling of HFE7100 in a 1.01 

mm high by 13.0 mm wide by 12.7 mm long channel. In order 

to compare the results of the present study and those of an earlier 

study by the present authors [28] with the dominant force regime 

maps proposed by Reynolds, Saad, and Satterlee [19] and Baba 

et al. [20], the relevant non-dimensional numbers were calcu-

lated via two methods: (1) using the hydraulic diameter for all 

length scales in Eq. 1-4 and (2) using the channel width for sur-

face tension terms and the channel length in the direction of the 

gravity vector for gravity terms (subsequently referred to as the 

HW formulation). All non-dimensional numbers were calculated 

using liquid only properties; for the maximum outlet quality of 

0.088, which occurred for at a mass flux of 100 kg/m2-s, the We-

ber number increases by 10 % and the Froude number increases 

by 5 %. The results are shown in Figures 11 and 12.  

The formulation of the non-dimensional numbers has a sig-

nificant effect on the force regime maps. Relative to using the 

hydraulic diameter as the characteristic length, the HW formula-

tion results in higher Weber numbers, higher Bond numbers for 

the HU/HD orientations, and much higher Bond numbers for the 

VU/VD and SW orientations. Similar Bond numbers for the 

VU/VD and SW orientations result from the channel width (13.0 

mm) being close to the channel length (12.7 mm).  

The dominant force regime maps reveal the critical im-

portance of accurately capturing the length scales for the surface 

tension and gravity terms used in the non-dimensional numbers. 

For example, using the hydraulic diameter or HW formulations 

for the HU and HD orientations with the Reynolds, Saad, and 

Satterlee transitions suggests that only the 100 kg/m2-s data set 

for the 1.01 mm channel would be in the dominated by gravity. 

However, the same boundaries with the HW formulations for the 

VU/VD and SW orientations suggest that the data sets captured 

at or below 400 kg/m2-s would be dominated by gravity. The 

current data set showed significant gravity effects at or below 

300 kg/m2-s. This result has important implications for space-

craft thermal management. As noted previously, Kandlikar and 

Balasubramanian [18] speculated that the absence of gravity 

would yield two-phase flow behavior similar to that seen in the 

horizontal orientation, since the absence of gravity would not 

cause any changes in the forces along the flow direction relative 

to the horizontal orientation. The dominant force regime maps 

suggest that inertia-dominated behavior occurs at lower Weber 
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numbers for the HU/HD orientations than for the VU/VD and 

SW orientations. It may therefore be possible that—for microgap 

channels—the transition to gravity-independent behavior occurs 

at lower Weber numbers than the transition to orientation-inde-

pendent behavior. Experimental two-phase data collected in 

microgravity are required to assess this potential. 

 

  
  

  
  

  
Figure 5: Single- and two-phase heat transfer coefficients as a function of heat flux, evaporator orientation, and mass flux  
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Horizontal Heater Up Vertical Upflow Sideways 

   
   

Horizontal Heater Down Vertical Downflow  

  

 

Figure 6: Flow boiling of HFE7100 in a 1.01 mm by 13.0 mm channel at mass flux 100 kg/m2-s and heat flux 53.6 kW/m2  

(flow direction is right to left; see Figure 3 for gravity vector orientation) 

 

Horizontal Heater Up Vertical Upflow Sideways 

   
   

Horizontal Heater Down Vertical Downflow  

  

 

Figure 7: Flow boiling of HFE7100 in a 1.01 mm by 13.0 mm channel at mass flux 300 kg/m2-s and heat flux 171.3 kW/m2  

(flow direction is right to left; see Figure 3 for gravity vector orientation) 
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Figure 8: Dominant force maps with boundaries from [19] and 

[20] with data from present study 

 

 
Figure 9: Dominant force maps with boundaries from [19] and 

[20] with data from [28] 

The Reynolds, Saad, and Satterlee transitions correctly pre-

dict the regime for five of the six data sets for the 1.01 mm tall 

channel and two of the three data sets for the 0.22 mm tall chan-

nel. The Baba et al. transitions fail to predict correctly the regime 

for any of the nine available data sets. Note that these results are 

relevant only to the gravity-dominated to inertia-dominated re-

gime boundary, as the Bond number and Weber numbers were 

well above the threshold values for the surface tension-domi-

nated regime predicted by both groups of researchers. 

The present results confirm the utility of dominant force re-

gime maps in predicting the transition to orientation-independent 

flow boiling, despite much of the work in this area being focused 

on the Bond number alone (or similar ratios of gravity to surface 

tension forces) [10,28]. Nonetheless, the Bond number must be 

used—and calculated accurately—to predict the transition from 

gravity-dominated to inertia-dominated behavior. 

As discussed in the “Previous Research” section, there has 

been considerable research into a 5.0 mm tall by 2.5 mm wide 

channel by other authors [11-13]. The cross sectional area of that 

channel is similar to the cross sectional area of the channel used 

for this work (12.5 versus 13.0 mm2). However, the required 

mass flux for achieving orientation-independence is very differ-

ent (2400 versus 400 kg/m2-s), with important implications for 

pumping power and system efficiency. Additional work is re-

quired to clarify whether this behavior is the result of differences 

in the channel aspect ratio and/or length, or some other factor. 

CONCLUSIONS AND FUTURE WORK 

A study has been performed to assess the role of evaporator 

orientation on two-phase flows in miniature and microscale rec-

tangular ducts of low aspect ratio. Earlier work revealed that 

many of the criteria proposed for the transition to microscale 

two-phase flow, which is also the point at which the role of grav-

ity is negligible, could be simplified to constant values of the 

Bond number. Other researchers have also considered the role of 

inertia, which has resulted in dominant force maps with regimes 

for surface tension-, gravity-, and inertia-dominated behavior. 

The boundaries among the regimes remain a subject of interest. 

The orientation-dependence of the two-phase thermofluid 

behavior of HFE7100 was studied at six mass fluxes covering   

100 to 700 kg/m2-s in a microgap cooler with a height of 1.01 

mm, width of 13.0 mm, and length of 12.7 mm. Gravity played 

a minimal role in the CHF, average HTCs, and flow regimes at 

and above a mass flux of 400 kg/m2-s. These results are in good 

agreement with the dominant regime map proposed by Reyn-

olds, Saad, and Satterlee [19] using the formulations of the Bond 

and Weber numbers that account for the surface tension terms 

scaling with the channel width and the gravity term scaling with 

the channel length parallel to the gravity vector. 

In some previous studies, the Bond number was calculated 

using the channel hydraulic diameter as the length scale, which 

resulted in a constant Bond number independent of orientation. 

The results of the present study suggest that the Bond number 

can be calculated as intended, with the gravity term scaling with 

the length parallel to the gravity vector, and the resultant domi-

nant force regimes are predicted accurately. However, questions 

remain regarding the appropriate length scales used in the calcu-

lation of the Bond and Weber numbers for microgap channels. 

For example, it is unclear whether the use of the channel width 

for the surface tension term is appropriate, as the liquid-vapor 

interface rarely spans the channel width. Future studies on ex-

periments with Bond and Weber numbers that span unity would 

help resolve this issue. 

Given the uncertainty in extrapolating orientation-independ-

ence to gravity-independence—either or both of which may be 

required in various applications—a payload incorporating a two-

phase microgap cooler is under development for planned opera-

tion during a suborbital flight. The flow loop will operate during 

the microgravity (< 0.001 ∙ 𝑔) and high-g re-entry  phases of the 

flight, which will clarify the role of body forces on two-phase 

flow regimes and transport rates in microgap channels. 
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NOMENCLATURE 

𝐵𝑜 Bond number (-) 

CHF Critical heat flux (kW/m2) 

𝐷 Diameter (m) 

𝐹𝑟 Froude number (-) 

𝐺 Mass flux (kg/m2-s) 

𝐻 Height (m) 

HD Horizontal heater facing down 

HU Horizontal heater facing up 

𝐿 Length (m) 

SW Sideways 

𝑊 Width (m) 

𝑊𝑒 Weber number (-) 

𝑈 Velocity (m/s) 

VD Vertical downflow 

VU Vertical upflow 

𝑔 Acceleration due to gravity (m/s2) 

Subscripts 

act Actual 

𝑙 Liquid 

𝑚 Mixture 

nom Nominal 

sat Saturation 

sub Subcooling 

𝑣 Vapor 

Greek Letters 

∆ Differential 

𝜃 Angle (°) 

𝜌 Density (kg/m3) 

𝜎 Surface tension (N/m) 
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